Bubbles navigating through networks of microchannels.
نویسندگان
چکیده
This paper describes the behavior of bubbles suspended in a carrier liquid and moving within microfluidic networks of different connectivities. A single-phase continuum fluid, when flowing in a network of channels, partitions itself among all possible paths connecting the inlet and outlet. The flow rates along different paths are determined by the interaction between the fluid and the global structure of the network. That is, the distribution of flows depends on the fluidic resistances of all channels of the network. The movement of bubbles of gas, or droplets of liquid, suspended in a liquid can be quite different from the movement of a single-phase liquid, especially when they have sizes slightly larger than the channels, so that the bubbles (or droplets) contribute to the fluidic resistance of a channel when they are transiting it. This paper examines bubbles in this size range; in the size range examined, the bubbles are discrete and do not divide at junctions. As a consequence, a single bubble traverses only one of the possible paths through the network, and makes a sequence of binary choices ("left" or "right") at each branching intersection it encounters. We designed networks so that, at each junction, a bubble enters the channel into which the volumetric flow rate of the carrier liquid is highest. When there is only a single bubble inside a network at a time, the path taken by the bubble is, counter-intuitively, not necessarily the shortest or the fastest connecting the inlet and outlet. When a small number of bubbles move simultaneously through a network, they interact with one another by modifying fluidic resistances and flows in a time dependent manner; such groups of bubbles show very complex behaviors. When a large number of bubbles (sufficiently large that the volume of the bubbles occupies a significant fraction of the volume of the network) flow simultaneously through a network, however, the collective behavior of bubbles-the fluxes of bubbles through different paths of the network-can resemble the distribution of flows of a single-phase fluid.
منابع مشابه
The pressure drop along rectangular microchannels containing bubbles.
This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of b...
متن کاملDirect Simulation Based Model-Predictive Control of Flow Maldistribution in Parallel Microchannels
Flow maldistribution, resulting from bubbles or other particulate matter, can lead to drastic performance degradation in devices that employ parallel microchannels for heat transfer. In this work, direct numerical simulations of fluid flow through a prescribed parallel microchannel geometry are performed and coupled with active control of actuated microvalves to effectively identify and reduce ...
متن کاملThe Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning ac...
متن کاملCorrection: The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels.
Correction for 'The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels' by Claudiu A. Stan et al., Lab Chip, 2013, 13, 365-376.
متن کاملThe effect of inlet constriction on bubble growth during flow boiling in microchannels
Flow boiling through microchannels is characterized by nucleation of vapor bubbles on the channel walls. In parallel microchannels connected through a common header, formation of vapor bubbles often results in flow mal-distribution that leads to reversed flow in certain channels. One way of eliminating the reversed flow is to incorporate flow restrictions at the channel inlet. In the present st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 11 23 شماره
صفحات -
تاریخ انتشار 2011